AQA Chemistry GCSE

Required Practical 2 - Neutralisation
Higher Tier
Past Exam Questions

Q1. Sodium hydroxide neutralises sulfuric acid.
The equation for the reaction is:
2NaOH + H2SO4→Na2SO4 + 2H2O
(a) Sulfuric acid is a strong acid.
What is meant by a strong acid?
(2)
(b) Write the ionic equation for this neutralisation reaction. Include state symbols.
(2)
(c) A student used a pipette to add 25.0 cm3 of sodium hydroxide of unknown concentration to a conical flask. The student carried out a titration to find out the volume of 0.100 mol / dm3 sulfuric acid needed to neutralise the sodium hydroxide. Describe how the student would complete the titration. You should name a suitable indicator and give the colour change that would be seen.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concording th	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	1 2 3 4 5 Volume of 0.100 mol / 27.40 28.15 27.05 27.15 27.15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concording th	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 accordant results are within 0.10 cm3 of each other. Use the student's concordant results are within 0.10 cm3 of each other.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concording th	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concording th	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concording th	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 3 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 cordant results are within 0.10 cm3 of each other. Use the student's concord						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Titration 1 Titration 2 Titration 4 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 2 Titration 4 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 2 Titration 4 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 Titration 2 Titration 4 Titration 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Titration 1 2 3 4 5 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1						
1 2 3 4 5 Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15	Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	Volume of 0.100 mol / dm³ sulfuric acid in cm³ 27.40 28.15 27.05 27.15 27.15 27.15 ordant results are within 0.10 cm3 of each other. Use the student's concord	e student carried out five	e titrations.	Her resul	ts are sho	wn in the	table belc
dm³ sulfuric acid in cm³	ordant results are within 0.10 cm3 of each other. Use the student's concord	dm³ sulfuric acid in cm³ cordant results are within 0.10 cm3 of each other. Use the student's concord	dm³ sulfuric acid in cm³ cordant results are within 0.10 cm3 of each other. Use the student's concord	dm³ sulfuric acid in cm³ cordant results are within 0.10 cm3 of each other. Use the student's concord	dm³ sulfuric acid in cm³ cordant results are within 0.10 cm3 of each other. Use the student's concord		100000000000000000000000000000000000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000	13/3/19/20/20/20	10.00
							27.40	28.15	27.05	27.15	27.15
volume =	volume = cm3	ı volume = cm3	า volume = cm3	n volume = cm3	n volume = cm3	n volume =			cm3		

(e) The equation for the reaction is:

2NaOH + H2SO4→Na2SO4+ 2H2O

Calculate the concentration of the sodium hydroxide.	
Give your answer to three significant figures.	
Concentration = mol / dm3	(4)
(f) The student did another experiment using 20 cm3 of sodium hydroxide sola concentration of 0.18 mol / dm3. Relative formula mass (Mr) of NaOH = 40 the mass of sodium hydroxide in 20 cm3 of this solution.	
Mass = g	
y	(2)